Will Scott

IETF 98

Last week I talked briefly about the state of open internet measurement for network anomalies at IETF 98. This was my first time attending an IETF in-person meeting, and it was very useful in getting a better understanding of how to navigate the standards process, how it’s used by others, and what value can be gained from it.

A couple highlights that I took away from the event:

There’s a concern throughout the IETF about solving the privacy leaks in existing protocols for general web access. There are three major points in the protocol that need to be addressed and are under discussion as part of this: The first is coming up with a successor to DNS that provides confidentiality. This, I think, is going to be the most challenging point. The second is coming up with a SNI equivalent that doesn’t send the requested domain in plain-text. The third is adapting the current public certificate transparency process to provide confidentiality of the specific domains issued certificates, while maintaining the accountability provided by the system.

Confidential DNS

There are two proposals with traction for encrypting DNS that I’m aware of. Neither fully solve the problem, but both provide reasonable ways forward. The first is dnscrypt, a protocol with support from entities like yandex and cloudflare. It maintains a stateless UDP protocol, and encrypts requests and responses against server and client keys. There are working client proxies for most platforms, although installation on mobile is hacky, and a set of running providers. The other alternative, which was represented at IETF and seems to be preferred by the standards community is DNS over TLS. The benefit here that there’s no new protocol, meaning less code that needs to be audited to gain confidence of the security properties for the system. There are some working servers and client proxies available for this, but the community seems more fragmented, unfortunately.

The eventual problem that isn’t yet addressed is that you still need to trust some remote party with your dns query and neither protocol changes the underlying protocol where the work of dns resolution is performed by someone chosen by the local network. Current proxies allow the client to choose who this is instead, but that doesn’t remove the trust issue, and doesn’t work well with captive portals or scale to widespread deployment. It also doesn’t prevent that third party from tracking the chain of dns requests made by the client and getting a pretty good idea about what the client is doing.

Hidden SNI

SNI, or server name identification, is a process that occurs at the beginning of an HTTPS request where the client tells the server which domain it wants to talk to. This is a critical part of the protocol, because it allows a single IP address to host HTTPS servers for multiple domains. Unfortunately, it also allows the network to detect and potentially block requests at a domain, rather than IP granularity.

Proposals for encrypting the SNI have been around for a couple years. Unfortunately, they did not get included in TLS1.3, which means that it will be a while before the next iteration of the standard and the potential to include this update.

The good news was that there seems to be continued interest in figuring out ways to protect the SNI of client requests, though no current proposal I’m aware of.

Certificate Transparency Privacy

Certificate Transparency is an addition to the HTTPS system to enforce additional accountability in to the certificate authority system. It requires authorities (CA)’s to publish a log of all certificates they issue publicly, so that third parties can audit their list and make sure they haven’t secretly mis-issued certificates. While a great feature for accountability and web security, it also opens an additional channel where the list of domains with SSL certificates can be enumerated. This includes internal or private domains that the owner would like to remain obscure.

As google and others have moved to require the CT log from all authorities through requirements on browser certificate validity, this issue is again at the fore. There’s been work on addressing this problem, including a cryptographic proposal and the IETF proposal for domain label redaction which seems to be advancing through the standards process.

There remains a ways to go to migrate to protocols which provide some protection against a malicious network, but there’s willingness and work to get there, which is at least a start.

Exit mobile version