
System Calls
Will Scott

Processes

Hardware

Operating System Kernel

App App App

System Calls
How do applications safely make requests to
the Operating System?

Examples
read, write, open, close
fork, mount, mkdir, select,
init_module, sleep

Types of System Calls
● Process Control
● Filesystem
● Device Manipulation
● Learn System Information
● Communication

System Calls
~350 system calls exist in linux.

http://syscalls.kernelgrok.com/

Computer Architecture

http://bottomupcs.sourceforge.net/csbu/c1453.htm

Hardware support
● Privileged instruction - potentially unsafe

instructions are prohibited in user-mode
● Memory protection - memory outside the

process can't be accessed
● Interrupts - the kernel needs some way to

regain control

How is a system call made?
i386 int $0x80

x86_64 syscall

arm swi 0x0

What does that do?
Acts like a hardware interrupt with code 80.
Jumps to interrupt handler.
1. Validates user input
2. Runs requested function
3. Returns to user

How do we validate input?
Is it possible for the kernel to implement 350
system calls without any bugs?

How do we return?
 popl %ebx;
 popl %ecx;
 popl %edx;
 popl %esi;
 popl %edi;
 popl %ebp;
 popl %eax;
1 popl %ds;
2 popl %es;
 addl $4,%esp;
3 iret;

Returns control to point of interruption by popping IP, CS
and then the Flags from the stack and continues execution at
this location. CPU exception interrupts will return to the
instruction that cause the exception because the CS:IP placed
on the stack during the interrupt is the address of the offending
instruction.

System Call conventions
Where should work be done?

Layering permissions
● Principle of least privilege
● Units of execution privilege
● Performance vs Expressiveness

Layering permissions
● Alternatives
● Microkernel
● Unikernel
● Exokernel

Layering Permissions
Ring0

Ring1

Ring2

Ring3

System Calls: Part 2

fopen(3)
● $ man fopen

fopen

from BSD
libc/stdio/fopen.c v1.5

open

open

open

https://git.kernel.org/pub/scm/linux/kernel/git/stable/linux.git/tree/arch/x86/entry/syscalls/syscall_32.tbl?h=v5.3.12

Cooperative Multitasking
● Most Operating Systems to day preempt

processes to switch contexts.
● Cooperative models ask processes to

periodically yield control back to the OS.
● Examples:
● Mac OS 9. Windows 16bit apps

Linux
● ps
● ls /sys, /proc
● top
● kill
● ctrl-z, bg, fg

Homework for next lecture
A network packet arrives.
Later, an application attempts to 'recv' (receive)
the packet.

When should code run to:
a. Validate the packet checksum?
b. Copy the packet to user memory?

